En líneas anteriores se ha señalado que el objeto de estudio de la Estadística son las poblaciones y que estas están formadas por entes o elementos. El número total de los mismos determina el tamaño de la población. Para estudiar una población, lo primero que debe hacerse es observarla de alguna de las formas que ya se ha señalado en las líneas anteriores. Pero observar una población es equivalente a observar sus elementos. Ahora bien, esos elementos poseen una serie de características que son las que realmente se observan. Por ejemplo, el conjunto de todas las empresas industriales radicadas en España constituyen una población. Los elementos de esa población son las empresas. Pero una empresa no se observa en abstracto. Lo que realmente tiene interés son las distintas características de esas empresas, como, por ejemplo, el número de empleados, el volumen de ventas, los costos salariales, los gastos en publicidad, los beneficios de las mismas, la naturaleza de los productos que fabrican, etc.
A todas estas características de los elementos de una población se les conoce de forma genérica como caracteres. Estos últimos, según su naturaleza, pueden ser de tipo cuantitativo o cualitativo. Para el ejemplo anterior, serían caracteres cuantitativos “el número de empleados”, “el volumen de ventas”, “los costos salariales”, “los gastos en publicidad”, “los beneficios de las mismas”, etc., mientras que sería cualitativo “la naturaleza de los productos que fabrican”. Hay que señalar que, en general, cualquier carácter de tipo cuantitativo se puede ofrecer en términos cualitativos. Así, si el número de empleados lo agrupamos en intervalos, se podría hablar de empresas pequeñas, medinas y grandes, siendo ahora el carácter “tamaño de la empresa” de naturaleza cualitativa. De manera similar se podría proceder con los demás. Pero en estadística es más habitual hablar de variables que de caracteres cuantitativos y de atributos en lugar de caracteres cualitativos. Las variables son susceptibles de medirse en términos cuantitativos y a cada una de esas posibles mediciones o realizaciones se les conoce como valores, datos u observaciones.
A todas estas características de los elementos de una población se les conoce de forma genérica como caracteres. Estos últimos, según su naturaleza, pueden ser de tipo cuantitativo o cualitativo. Para el ejemplo anterior, serían caracteres cuantitativos “el número de empleados”, “el volumen de ventas”, “los costos salariales”, “los gastos en publicidad”, “los beneficios de las mismas”, etc., mientras que sería cualitativo “la naturaleza de los productos que fabrican”. Hay que señalar que, en general, cualquier carácter de tipo cuantitativo se puede ofrecer en términos cualitativos. Así, si el número de empleados lo agrupamos en intervalos, se podría hablar de empresas pequeñas, medinas y grandes, siendo ahora el carácter “tamaño de la empresa” de naturaleza cualitativa. De manera similar se podría proceder con los demás. Pero en estadística es más habitual hablar de variables que de caracteres cuantitativos y de atributos en lugar de caracteres cualitativos. Las variables son susceptibles de medirse en términos cuantitativos y a cada una de esas posibles mediciones o realizaciones se les conoce como valores, datos u observaciones.
A su vez, en función del número posible de valores que tome una variable, a las mismas se les puede clasificar en discretas y continuas. Serán discretas cuando el número de valores sea finito o infinito numerable, mientras que una variable será continua cuando el número de sus valores sea infinito no numerable. En los casos en los que las variables toman infinitos valores, la práctica habitual es agruparlos en intervalos, como se muestra en las Tabla 1, para variable continua, y en la Tabla 2 para discreta.
Variable discreta, es aquella que entre dos valores próximos puede tomar a un número finito de valores, es decir, es aquella que contiene saltos entre un número y otro (1, 2, 3, 4, etc.), por ejemplo: el número de miembros de una familia, el de obreros de una fábrica, el de alumnos de la universidad, etc.
Variable continúa, es la que puede tomar infinitos valores de un intervalo, es decir, es aquella que no contiene saltos (1.1, 1.2, 1.3, 1.4, etc.) En muchas ocasiones la diferencia es más teórica que práctica, ya que los aparatos de medida dificultan que puedan existir todos los valores del intervalo. Ejemplos, peso, estatura, distancias, etc.
La variable se denota por las mayúsculas de letras finales del alfabeto castellano. A su vez cada una de estas variables puede tomar distintos valores, colocando un subíndice, que indica el orden.
Variable discreta, es aquella que entre dos valores próximos puede tomar a un número finito de valores, es decir, es aquella que contiene saltos entre un número y otro (1, 2, 3, 4, etc.), por ejemplo: el número de miembros de una familia, el de obreros de una fábrica, el de alumnos de la universidad, etc.
Variable continúa, es la que puede tomar infinitos valores de un intervalo, es decir, es aquella que no contiene saltos (1.1, 1.2, 1.3, 1.4, etc.) En muchas ocasiones la diferencia es más teórica que práctica, ya que los aparatos de medida dificultan que puedan existir todos los valores del intervalo. Ejemplos, peso, estatura, distancias, etc.
La variable se denota por las mayúsculas de letras finales del alfabeto castellano. A su vez cada una de estas variables puede tomar distintos valores, colocando un subíndice, que indica el orden.
X = (X1, X2,...... Xn)
Los atributos no pueden medirse como ocurre con las variables. Lo único que puede hacerse con ellos es describirlos mediante palabras y clasificarlos en categorías no numéricas que sean mutuamente excluyentes. A cada una de
estas categorías se le denomina modalidades. Un ejemplo es el que se recoge en la Tabla 3.
estas categorías se le denomina modalidades. Un ejemplo es el que se recoge en la Tabla 3.
En algunos casos, las modalidades de un atributo pueden ser objeto de ordenación, como se aprecia en la tabla 4.
No hay comentarios:
Publicar un comentario